Wednesday, February 18, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries

Microscopic images of silicon nanofibers
Scanning electron microscope images of
(a) SiO2 nanofibers after drying, (b) SiO2
nanofibers under high magnification (c) silicon
nanofibers after etching, and (d) silicon nanofibers
under high magnification.
Researchers at the University of California, Riverside’s Bourns College of Engineering have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery.
This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair. It could be used in batteries for electric vehicles and personal electronics.
The findings were just published in a paper, “Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers,” in the journal Nature Scientific Reports. The authors were Mihri Ozkan, a professor of electrical and computer engineering, Cengiz S. Ozkan, a professor of mechanical engineering, and six of their graduate students: Zach Favors, Hamed Hosseini Bay, Zafer Mutlu, Kazi Ahmed, Robert Ionescu and Rachel Ye.
The nanofibers were produced using a technique known as electrospinning, whereby 20,000 to 40,000 volts are applied between a rotating drum and a nozzle, which emits a solution composed mainly of tetraethyl orthosilicate (TEOS), a chemical compound frequently used in the semiconductor industry. The nanofibers are then exposed to magnesium vapor to produce the sponge-like silicon fiber structure.
Conventionally produced lithium-ion battery anodes are made using copper foil coated with a mixture of graphite, a conductive additive, and a polymer binder. But, because the performance of graphite has been nearly tapped out, researchers are experimenting with other materials, such as silicon, which has a specific capacity, or electrical charge per unit weight of the battery, nearly 10 times higher than graphite.
silicon nanofiber images
(a) Schematic representation of the electrospinning
process and subsequent reduction process. Digital
photographs of (b) as-spun SiO2 nanofibers paper, (c)
etched silicon nanofiber paper, and (d) carbon-coated silicon
nanofiber paper as used in the lithium-ion half-cell
configuration.
The problem with silicon is that is suffers from significant volume expansion, which can quickly degrade the battery. The silicon nanofiber structure created in the Ozkan’s labs circumvents this issue and allows the battery to be cycled hundreds of times without significant degradation.
“Eliminating the need for metal current collectors and inactive polymer binders while switching to an energy dense material such as silicon will significantly boost the range capabilities of electric vehicles,” Favors said.
This technology also solves a problem that has plagued free-standing, or binderless, electrodes for years: scalability. Free-standing materials grown using chemical vapor deposition, such as carbon nanotubes or silicon nanowires, can only be produced in very small quantities (micrograms). However, Favors was able to produce several grams of silicon nanofibers at a time even at the lab scale.
The researchers’ future work involves implementing the silicon nanofibers into a pouch cell format lithium-ion battery, which is a larger scale battery format that can be used in EVs and portable electronics.
The research is supported by Temiz Energy Technologies. The UC Riverside Office of Technology Commercialization has filed patents for inventions reported in the research paper.
http://ucrtoday.ucr.edu/27263

Quantum biology - algae evolved to switch quantum coherence on and off

Scanning electron microscope image of cryptophytes. Image: CSIRO
A UNSW-led team of researchers has discovered how algae that survive in very low levels of light are able to switch on and off a weird quantum phenomenon that occurs during photosynthesis.
The function in the algae of this quantum effect, known as coherence, remains a mystery, but it is thought it could help them harvest energy from the sun much more efficiently.
Working out its role in a living organism could lead to technological advances, such as better organic solar cells and quantum-based electronic devices.
The research is published in the journal Proceedings of the National Academy of Sciences.
It is part of an emerging field called quantum biology, in which evidence is growing that quantum phenomena are operating in nature, not just the laboratory, and may even account for how birds can navigate using the earth’s magnetic field.
“We studied tiny single-celled algae called cryptophytes that thrive in the bottom of pools of water, or under thick ice, where very little light reaches them,” says senior author, Professor Paul Curmi, of the UNSW School of Physics.
“Most cryptophytes have a light-harvesting system where quantum coherence is present. But we have found a class of cryptophytes where it is switched off because of a genetic mutation that alters the shape of a light-harvesting protein.
“This is a very exciting find. It means we will be able to uncover the role of quantum coherence in photosynthesis by comparing organisms with the two different types of proteins.”
In the weird world of quantum physics, a system that is coherent – with all quantum waves in step with each other – can exist in many different states simultaneously, an effect known as superposition. This phenomenon is usually only observed under tightly controlled laboratory conditions.
So the team, which includes Professor Gregory Scholes from the University of Toronto in Canada, was surprised to discover in 2010 that the transfer of energy between molecules in the light harvesting systems from two different cryptophyte species was coherent.
The same effect has been found in green sulphur bacteria that also survive in very low light levels.
“The assumption is that this could increase the efficiency of photosynthesis, allowing the algae and bacteria to exist on almost no light,” says Professor Curmi.
“Once a light-harvesting protein has captured sunlight, it needs to get that trapped energy to the reaction centre in the cell as quickly as possible, where the energy is converted into chemical energy for the organism.
“It was assumed the energy gets to the reaction centre in a random fashion, like a drunk staggering home. But quantum coherence would allow the energy to test every possible pathway simultaneously before travelling via the quickest route.”
In the new study, the team used x-ray crystallography to work out the crystal structure of the light-harvesting complexes from three different species of cryptophytes.
They found that in two species a genetic mutation has led to the insertion of an extra amino acid that changes the structure of the protein complex, disrupting coherence.
“This shows cryptophytes have evolved an elegant but powerful genetic switch to control coherence and change the mechanisms used for light harvesting,” says Professor Curmi.
The next step will be to compare the biology of different cryptophytes, such as whether they inhabit different environmental niches, to work out whether the quantum coherence effect is assisting their survival.
The team was led by UNSW’s Dr Stephen Harrop and Dr Krystyna Wilk, and includes researchers from the University of Toronto, the University of Padua, the University of British Columbia, the University of Cologne and Macquarie University.

Correlations of quantum particles help in distinguishing physical processes


Using quantum steering in the discrimination of physical processes
Using quantum steering in the discrimination of physical processes.

Communication security and metrology could be enhanced through a study of the role of quantum correlations in the distinguishability of physical processes, by researchers at the Universities of Strathclyde and Waterloo.
The study involved analysing the impact of quantum steering, that is, the way through which a measurement performed on a particle can affect another distant particle. The study authors devised a method for both precisely quantifying steering’s impact and relating it to the task of distinguishing physical processes.
The research could have significant implications for quantum information processing.
The study was carried out by Dr Marco Piani, of Strathclyde’s Department of Physics, and Professor John Watrous, of Waterloo’s Institute for Quantum Computing (IQC) and David R. Cheriton School of Computer Science. Dr Piani was also at IQC at the time of the study.
Dr Piani said: “Quantum particles can be in a particular state known as `entangled’. Albert Einstein, with Boris Podolsky and Nathan Rosen, scrutinised quantum mechanics and specifically the entanglement of quantum particles. Faced with the perspective of the steering effect, they argued that quantum mechanics was still an incomplete theory, since it predicted what Einstein considered a `spooky action at a distance’ – indeed, two particles can be at opposite ends of a galaxy and still be entangled.
“We now know that steering is a crucial and real quantum effect; however, knowledge about what steering is actually useful for has remained limited. In our research, we related steering to the discrimination of physical processes, which seeks to answer questions about what happens in time to physical systems of interest, like microscopic particles. We were able to prove that the steering effect is the key to providing a specific advantage in this type of task.
“Our results, including the tools we introduced to quantify steering, could be applied to fields such as quantum cryptography, where secret keys are created between two parties so they can submit and encrypt messages to communicate privately – as it happens, for example, in online banking. Our results could also be useful in quantum metrology and in other areas of quantum information processing”.
Dr Watrous said: "Steering is an interesting phenomenon in quantum physics. Our work ties this concept in a new way to a specific information-theoretic task in which it functions as an essential resource. It is a hypothetical task that you won't find on your to-do list, but it is both natural and intuitive, and the connection offers a new insight into the nature of steering."
The research has been published in the journal Physical Review Letters and was presented by Dr Piani at the 18th Conference on Quantum Information Processing, held in Sydney on 12-16 January. Their paper was one of around 40 accepted from more than 200 submissions.
The Research Excellence Framework 2014, the comprehensive rating of UK universities’ research, ranked the University of Strathclyde’s Physics research first in the UK, with 96% of output assessed as world-leading or internationally excellent.
https://uwaterloo.ca/institute-for-quantum-computing/news/correlations-quantum-particles-help-distinguishing-physical

Tuesday, February 17, 2015

Autonomous Atom Assembly of Nanostructures using a Scanning Tunneling Microscope

From left to right, each figure shows the configuration after each atom move. Image size 15 nm × 15 nm.  Center: Perfect assembly of the NIST logo after four steps of automated assembly. Image size 40 nm × 17 nm.
Automated assembly of individual cobalt atoms on an atomically
flat copper surface into simple geometric shapes, a square, a triangle,
and a circle. From left to right, each figure shows the configuration
after each atom move. Image size 15 nm × 15 nm. Center: Perfect
assembly of the NIST logo after four steps of automated assembly.
Image size 40 nm × 17 nm. All images are shown in colored 3D top view
with light shadowing with a height range of ≈100 pm.
NIST researchers have demonstrated the autonomous computer-controlled assembly of atoms into perfect nanostructures using a low temperature scanning tunneling microscope. The results, published in an invited article in the Review of Scientific Instruments, show the construction without human intervention of quantum confined two-dimensional nanostructures using single atoms or single molecules on a copper surface.
A major goal of nanotechnology is to develop so-called “bottom up” technologies to arrange matter at will by placing atoms exactly where one wants them in order to build nanostructures with specific properties or function. The researchers, led by Robert Celotta and Joseph Stroscio from the CNST, have demonstrated the first steps towards achieving that capability using the atom manipulation mode of a scanning tunneling microscope (STM) in combination with autonomous motion algorithms.
The team, which includes Stephen Balakirsky (previously in EL and now at Georgia Tech), Aaron Fein (PML), Frank Hess (previously in the CNST), and Gregory Rutter (previously in the CNST and now at Intel), used autonomous algorithms to manipulate single atoms and molecules, much like the algorithms for “hands-free” car driving. The system works by first scanning the locations of available atoms on the surface. It then specifies the desired coordinates of atoms of a nanostructure, and autonomously calculates and directs the trajectories for the STM probe tip to move all the atoms to their desired locations.  
The team was able to demonstrate that it could autonomously construct cobalt atoms into nanostructures that confine the quantum properties of the copper’s surface electrons.  It then used the STM to measure those properties. In addition to demonstrating the construction of nanostructures made out of atoms, they demonstrated that it was possible to construct nanoscale lattices made of carbon monoxide molecules and to tailor-make interacting quantum dots formed from vacancies in the carbon monoxide lattices.
The researchers believe that an approach based on autonomous construction of atoms and molecules using this technique could be the foundation for an easily accessed toolkit for producing tailored quantum states with applications in quantum information processing and nanophotonics.
http://www.nist.gov/cnst/automated_atom_assembly.cfm

Revolutionary new probe zooms in on cancer cells


Brain cancer patients may live longer thanks to a new cancer-detection method developed by researchers at the Montreal Neurological Institute and Hospital – The Neuro, at McGill University and the MUHC, and Polytechnique Montréal. The collaborative team has created a powerful new intraoperative probe for detecting cancer cells. The hand-held Raman spectroscopy probe enables surgeons, for the first time, to accurately detect virtually all invasive brain cancer cells in real time during surgery. The probe is superior to existing technology and could set a new standard for successful brain cancer surgery.
“Often it is impossible to visually distinguish cancer from normal brain, so invasive brain cancer cells frequently remain after surgery, leading to cancer recurrence and a worse prognosis,” says Dr. Kevin Petrecca, Chief of Neurosurgery and brain cancer researcher at The Neuro, and co-senior author of the study published today in Science Translational Medicine. “Surgically minimizing the number of cancer cells improves patient outcomes.”

esigned and developed in partnership with Dr. Frédéric Leblond, Professor in Engineering Physics at Polytechnique Montréal, and co-senior author of the study, the probe technique uses laser technology to measure light scattered from molecules. “The emitted light provides a spectroscopic signal that can be interpreted to provide specific information about the molecular makeup of the interrogated tissue,” says Dr. Leblond. “The Raman spectroscopy probe has a greater than 92% accuracy in identifying cancer cells that have invaded into normal brain.”


The Raman probe was tested on patients with grade 2, 3 and 4 gliomas, which are highly invasive brain cancers. “We showed that the probe is equally capable of detecting invasive cancer cells from all grades of invasive gliomas,” says Dr. Petrecca. “There is strong evidence that the extent of tumour removal affects prognosis for all grades of invasive gliomas.”


In order to show that the use of this system improves patient outcomes, a clinical trial at the Montreal Neurological Institute and Hospital will be launched for patients with newly diagnosed and recurrent glioblastoma. If positive, this portable intraoperative Raman Spectroscopy probe will improve brain cancer surgeries and in turn extend survival times for brain cancer patients.


Dr. Kevin Petrecca at The Neuro and Dr. Frederic Leblond at Polytechnique Montréal are co-senior authors. Kelvin Mok at The Neuro and Dr. Michael Jermyn, at The Neuro and Polytechnique Montréal are co- first authors on the paper. This work was supported by the Fonds de recherche du Québec–Nature et technologies, the Natural Sciences and Engineering Research Council of Canada and the Groupe de recherche en sciences et technologies biomédicales.


The Montreal Neurological Institute and Hospital – The Neuro


The Neuro is an academic medical centre dedicated to neuroscience. The Neuro is a research and teaching institute of McGill University and at the centre of the neuroscience mission of the McGill University Health Centre. The eminent neurosurgeon Wilder Penfield founded The Neuro in 1934. Since then, The Neuro has achieved international renown for its integration of research, outstanding patient care and advanced training. The Neuro has a world-class staff in cellular and molecular neuroscience, brain imaging, cognitive neuroscience, as well as in the study and treatment of brain tumours, epilepsy, multiple sclerosis and neuromuscular disorders. For more information, please visit www.mni.mcgill.ca


Polytechnique Montréal


Founded in 1873, Polytechnique Montréal is one of Canada's leading engineering teaching and research institutions. It is the largest engineering university in Québec for the size of its graduate student body and the scope of its research activities. With over 43,000 graduates, Polytechnique Montréal has educated nearly one-quarter of the current members of the Ordre des ingénieurs du Québec. Polytechnique provides training in 15 engineering specialties, has 265 professors and more than 8,000 students. It has an annual operating budget of over $200 million, including an $80-million research budget.
Improves tumour surgeries and extends survival times for brain cancer patients



VIDEO: http://bit.ly/1EYjsTV

http://www.mcgill.ca/neuro/channels/news/revolutionary-new-probe-zooms-cancer-cells-241687

Bacterial Armor Holds Clues for Self-Assembling Nanostructures


Many bacteria and archaea encase themselves within a self-assembling protective shell of S-layer proteins, like chainmail armor. The process is a model for the self-assembly of 2D and 3D organic and inorganic nanostructures.
Many bacteria and archaea encase themselves within a self-assembling protective shell of S-layer proteins, like chainmail armor. The process is a model for the self-assembly of 2D and 3D organic and inorganic nanostructures.
Imagine thousands of copies of a single protein organizing into a coat of chainmail armor that protects the wearer from harsh and ever-changing environmental conditions. That is the case for many microorganisms. In a new study, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have uncovered key details in this natural process that can be used for the self-assembly of nanomaterials into complex two- and three-dimensional structures.
Caroline Ajo-Franklin, a chemist and synthetic biologist at Berkeley Lab’s Molecular Foundry, led this study in which high-throughput light scattering measurements were used to investigate the self-assembly of 2D nanosheets from a common bacterial surface layer (S-layer) protein. This protein, called “SbpA,” forms the protective armor for Lysinibacillus sphaericus, a soil bacterium used as a toxin to control mosquitoes. Their investigation revealed that calcium ions play a key role in how this armor assembles. Two key roles actually.
“Calcium ions not only trigger the folding of the protein into the correct shape for nanosheet formation, but also serve to bind the nanosheets together,” Ajo-Franklin says. “By establishing and using light scattering as a proxy for SbpA nanosheet formation, we were able to determine how varying the concentrations of calcium ions and SbpA affects the size and shape of the S-layer armor.”
Caroline Ajo-Franklin, Steve Whitelam and Behzad Rad led a team at Berkeley Lab’s Molecular Foundry that uncovered key details by which bacterial proteins self-assemble into a protective armor coating. (Photo by Roy Kaltschmidt)
Caroline Ajo-Franklin, Steve Whitelam and Behzad Rad led a team at Berkeley Lab’s Molecular Foundry that uncovered key details by which bacterial proteins self-assemble into a protective armor coating. (Photo by Roy Kaltschmidt)
Details on this study have been published in the journal ACS Nano in a paper titled “Ion-Specific Control of the Self-Assembly Dynamics of a Nanostructured Protein Lattice.” Ajo-Franklin is the corresponding author. Co-authors are Behzad Rad, Thomas Haxton, Albert Shon, Seong-Ho Shin and Stephen Whitelam.
In the microbial world of bacteria and archaea, external threats abound. Their surrounding environment can transition from extreme heat to extreme cold, or from highly acidic to highly basic. Predators are everywhere. To protect themselves, many bacteria and archaea encase themselves within a shell of S-layer proteins. While scientists have known about this protective coating for many years, how it forms has been a mystery.
Ajo-Franklin and her colleagues have been exploring self-assembling proteins as a potential means of creating nanostructures with complex structure and function.
“At the Molecular Foundry, we’ve gotten really good at making nanomaterials into different shapes but we are still learning how to assemble these materials into organized structures,” she says. “S-layer proteins are abundant biological proteins known to self-assemble into 2D crystalline nanosheets with lattice symmetries and pore sizes that are about the same dimensions as quantum dots and nanotubes. This makes them a compelling model system for the creation of nanostructured arrays of organic and inorganic materials in a bottom-up fashion.”
The binding of calcium ions to SbpA proteins starts the process by which the SbpA self-assembles into nanosheets. Ca2+ binds to SbpA with an affinity of 67 μM.
The binding of calcium ions to SbpA proteins starts the process
by which the SbpA self-assembles into nanosheets. Ca2+ binds to
SbpA with an affinity of 67 μM.
In this latest study, light-scattering measurements were used to map out diagrams that revealed the relative yield of self-assembled nanosheets over a wide range of concentrations of SbpA and calcium ions. In addition, the effects of substituting manganese or barium ions for calcium ions were examined to distinguish between a chemically specific and generic divalent cation role for the calcium ions. Behzad Rad, the lead author of the ACS Nano paper, and co-workers followed light-scattering by light in the visible spectrum. They then correlated the signal to nanosheet formation by using electron microscopy and Small Angle X-ray Scattering (SAXS), a technology that can provide information on molecular assemblies in just about any type of solution. The SAXS measurements were obtained at the “SIBYLS beamline (12.3.1) of Berkeley Lab’s Advanced Light Source.

“We learned that only calcium ions trigger the SbpA self-assembly process and that the concentrations of calcium ions inside the cell are too low for nanosheets to form, which is a good thing for the bacterium,” says Rad. “We also found that the time evolution of the light scattering traces is consistent with the irreversible growth of sheets from a negligibly small nucleus. As soon as five calcium ions bind to a SbpA protein, the process starts and the crystal grows really fast. The small nucleus is what makes our light-scattering technique work.”
Ajo-Franklin, Rad and their co-authors believe their light-scattering technique is applicable to any type of protein that self-assembles into 2D nanosheets, and can be used to monitor growth from the nanometer to the micrometer scales.
Given the rugged nature of the S-layer proteins and their adhesive quality – bacteria use their S-layer armor to attach themselves to their surroundings – there are many intriguing applications awaiting further study.
“One project we’re exploring is using SbpA proteins to make adhesive nanostructures that could be used to remove metals and other contaminants from water,” Ajo-Franklin says. “Now that we have such a good handle on how SbpA proteins self-assemble, we’d like to start mixing and matching them with other molecules to create new and useful structures.”
http://newscenter.lbl.gov/2015/02/11/bacterial-armor/

Nanotubes self-organize and wiggle: evolution of a non-equilibrium system demonstrates maximum entropy production

The second law of thermodynamics tells us that all systems evolve toward a state of maximum entropy, wherein all energy is dissipated as heat, and no available energy remains to do work. Since the mid-20th century, research has pointed to an extension of the second law for nonequilibrium systems: the Maximum Entropy Production Principle (MEPP) states that a system away from equilibrium evolves in such a way as to maximize entropy production, given present constraints.Consecutive snapshots of the sample illustrating the formation of nanotube chains. The distance between electrodes is 1 cm, applied voltage is 400 V, and the series resistor is 100 MOhm. Panel (a) demonstrates the photograph of the ER fluid before the voltage is applied and the schematic of the experimental setup. The following photographs are taken after 45, 90, and 1500 seconds of interaction with the electric field. Originally printed in Scientific Reports, 5, article number 8323, doi 10.1038/srep08323. Reprinted with the permission of the authors.Consecutive snapshots of the sample illustrating the formation of nanotube chains. The distance between electrodes is 1 cm, applied voltage is 400 V, and the series resistor is 100 MOhm. Panel (a) demonstrates the photograph of the ER fluid before the voltage is applied and the schematic of the experimental setup. The following photographs are taken after 45, 90, and 1500 seconds of interaction with the electric field. Originally printed in Scientific Reports, 5, article number 8323, doi 10.1038/srep08323. Reprinted with the permission of the authors.
Now physicists Alexey BezryadinAlfred Hubler, and Andrey Belkin from the University of Illinois at Urbana-Champaign, have demonstrated the emergence of self-organized structures that drive the evolution of a non-equilibrium system to a state of maximum entropy production. The authors suggest MEPP underlies the evolution of the artificial system’s self-organization, in the same way that it underlies the evolution of ordered systems (biological life) on Earth.
The team’s results are published in Nature Publishing Group’s online journal Scientific Reports.
(l to r) Professor Alexey Bezryadin, Assoc. Professor Alfred Hubler, and Postdoc Andrey Belkin
(l to r) Professor Alexey Bezryadin, Assoc. Professor Alfred Hubler, and Postdoc Andrey Belkin
“Toward the final stages of this regime, the appendages were not destroyed during the avalanches, but rather retracted until the avalanche ended, then reformed their connection. So it was obvious that the avalanches correspond to the ‘feeding cycle’ of the ‘nanotube inset’,” comments Bezryadin.
MEPP may have profound implications for our understanding of the evolution of biological life on Earth and of the underlying rules that govern the behavior and evolution of all nonequilibrium systems. Life emerged on Earth from the strongly nonequilibrium energy distribution created by the Sun’s hot photons striking a cooler planet. Plants evolved to capture high energy photons and produce heat, generating entropy. Then animals evolved to eat plants increasing the dissipation of heat energy and maximizing entropy production.

In their experiment, the researchers suspended a large number of carbon nanotubes in a non-conducting non-polar fluid and drove the system out of equilibrium by applying a strong electric field. Once electrically charged, the system evolved toward maximum entropy through two distinct intermediate states, with the spontaneous emergence of self-assembled conducting nanotube chains.
In the first state, the “avalanche” regime, the conductive chains aligned themselves according to the polarity of the applied voltage, allowing the system to carry current and thus to dissipate heat and produce entropy. The chains appeared to sprout appendages as nanotubes aligned themselves so as to adjoin adjacent parallel chains, effectively increasing entropy production. But frequently, this self-organization was destroyed through avalanches triggered by the heating and charging that emanates from the emerging electric current streams. (Watch the video.)

“The avalanches were apparent in the changes of the electric current over time,” said Bezryadin.
Following avalanches, the chains with their appendages “wiggled,” resembling a living thing, similar to an insect.
In the second relatively stable stage of evolution, the entropy production rate reached maximum or near maximum. This state is quasi-stable in that there were no destructive avalanches.  

The study points to a possible classification scheme for evolutionary stages and a criterium for the point at which evolution of the system is irreversible—wherein entropy production in the self-organizing subsystem reaches its maximum possible value. Further experimentation on a larger scale is necessary to affirm these underlying principals, but if they hold true, they will prove a great advantage in predicting behavioral and evolutionary trends in nonequilibrium systems.

The authors draw an analogy between the evolution of intelligent life forms on Earth and the emergence of the wiggling bugs in their experiment. The researchers note that further quantitative studies are needed to round out this comparison. In particular, they would need to demonstrate that their “wiggling bugs” can multiply, which would require the experiment be reproduced on a significantly larger scale.

Such a study, if successful, would have implications for the eventual development of technologies that feature self-organized artificial intelligence, an idea explored elsewhere by co-author Alfred Hubler, funded by the Defense Advanced Research Projects Agency.

“The general trend of the evolution of biological systems seems to be this: more advanced life forms tend to dissipate more energy by broadening their access to various forms of stored energy,” Bezryadin proposes. “Thus a common underlying principle can be suggested between our self-organized clouds of nanotubes, which generate more and more heat by reducing their electrical resistance and thus allow more current to flow, and the biological systems which look for new means to find food, either through biological adaptation or by inventing more technologies.

“Extended sources of food allow biological forms to further grow, multiply, consume more food and thus produce more heat and generate entropy. It seems reasonable to say that real life organisms are still far from the absolute maximum of the entropy production rate. In both cases, there are ‘avalanches’ or ‘extinction events’, which set back this evolution. Only if all free energy given by the Sun is consumed, by building a Dyson sphere for example, and converted into heat then a definitely stable phase of the evolution can be expected.”

“Intelligence, as far as we know, is inseparable from life,” he adds. “Thus, to achieve artificial life or artificial intelligence, our recommendation would be to study systems which are far from equilibrium, with many degrees of freedom—many building blocks—so that they can self-organize and participate in some evolution. The entropy production criterium appears to be the guiding principle of the evolution efficiency.”

http://engineering.illinois.edu/news/article/10591