Monday, August 31, 2015

Scientists 'squeeze' light one particle at a time




A team of scientists has successfully measured particles of light being "squeezed", in an experiment that had been written off in physics textbooks as impossible to observe.

Squeezing is a strange phenomenon of quantum physics. It creates a very specific form of light which is "low-noise" and is potentially useful in technology designed to pick up faint signals, such as the detection of gravitational waves.

The standard approach to squeezing light involves firing an intense laser beam at a material, usually a non-linear crystal, which produces the desired effect.

For more than 30 years, however, a theory has existed about another possible technique. This involves exciting a single atom with just a tiny amount of light. The theory states that the light scattered by this atom should, similarly, be squeezed.

Unfortunately, although the mathematical basis for this method - known as squeezing of resonance fluorescence - was drawn up in 1981, the experiment to observe it was so difficult that one established quantum physics textbook despairingly concludes: "It seems hopeless to measure it".

So it has proven - until now. In the journal Nature, a team of physicists report that they have successfully demonstrated the squeezing of individual light particles, or photons, using an artificially constructed atom, known as a semiconductor quantum dot. Thanks to the enhanced optical properties of this system and the technique used to make the measurements, they were able to observe the light as it was scattered, and proved that it had indeed been squeezed.

Professor Mete Atature, a Fellow of St John's College at the University of Cambridge, who led the research, said: "It's one of those cases of a fundamental question that theorists came up with, but which, after years of trying, people basically concluded it is impossible to see for real - if it's there at all."

"We managed to do it because we now have artificial atoms with optical properties that are superior to natural atoms. That meant we were able to reach the necessary conditions to observe this fundamental property of photons and prove that this odd phenomenon of squeezing really exists at the level of a single photon. It's a very bizarre effect that goes completely against our senses and expectations about what photons should do."

Like a lot of quantum physics, the principles behind squeezing light involve some mind-boggling concepts.

It begins with the fact that wherever there are light particles, there are also associated electromagnetic fluctuations. This is a sort of static which scientists refer to as "noise". Typically, the more intense light gets, the higher the noise. Dim the light, and the noise goes down.

But strangely, at a very fine quantum level, the picture changes. Even in a situation where there is no light, electromagnetic noise still exists. These are called vacuum fluctuations. While classical physics tells us that in the absence of a light source we will be in perfect darkness, quantum mechanics tells us that there is always some of this ambient fluctuation.

"If you look at a flat surface, it seems smooth and flat, but we know that if you really zoom in to a super-fine level, it probably isn't perfectly smooth at all," Atature said. "The same thing is happening with vacuum fluctuations. Once you get into the quantum world, you start to get this fine print. It looks like there are zero photons present, but actually there is just a tiny bit more than nothing."

Importantly, these vacuum fluctuations are always present and provide a base limit to the noise of a light field. Even lasers, the most perfect light source known, carry this level of fluctuating noise.
This is when things get stranger still, however, because, in the right quantum conditions, that base limit of noise can be lowered even further. This lower-than-nothing, or lower-than-vacuum, state is what physicists call squeezing.



In the Cambridge experiment, the researchers achieved this by shining a faint laser beam on to their artificial atom, the quantum dot. This excited the quantum dot and led to the emission of a stream of individual photons. Although normally, the noise associated with this photonic activity is greater than a vacuum state, when the dot was only excited weakly the noise associated with the light field actually dropped, becoming less than the supposed baseline of vacuum fluctuations.

Explaining why this happens involves some highly complex quantum physics. At its core, however, is a rule known as Heisenberg's uncertainty principle. This states that in any situation in which a particle has two linked properties, only one can be measured and the other must be uncertain.
In the normal world of classical physics, this rule does not apply. If an object is moving, we can measure both its position and momentum, for example, to understand where it is going and how long it is likely to take getting there. The pair of properties - position and momentum - are linked.

In the strange world of quantum physics, however, the situation changes. Heisenberg states that only one part of a pair can ever be measured, and the other must remain uncertain.

In the Cambridge experiment, the researchers used that rule to their advantage, creating a tradeoff between what could be measured, and what could not. By scattering faint laser light from the quantum dot, the noise of part of the electromagnetic field was reduced to an extremely precise and low level, below the standard baseline of vacuum fluctuations. This was done at the expense of making other parts of the electromagnetic field less measurable, meaning that it became possible to create a level of noise that was lower-than-nothing, in keeping with Heisenberg's uncertainty principle, and hence the laws of quantum physics.

Plotting the uncertainty with which fluctuations in the electromagnetic field could be measured on a graph creates a shape where the uncertainty of one part has been reduced, while the other has been extended. This creates a squashed-looking, or "squeezed" shape, hence the term, "squeezing" light.

Atature added that the main point of the study was simply to attempt to see this property of single photons, because it had never been seen before. "It's just the same as wanting to look at Pluto in more detail or establishing that pentaquarks are out there," he said. "Neither of those things has an obvious application right now, but the point is knowing more than we did before. We do this because we are curious and want to discover new things. That's the essence of what science is all about."

Thursday, August 13, 2015

Protons and antiprotons appear to be true mirror images

In a stringent test of a fundamental property of the standard model of particle physics, known as CPT symmetry, researchers from the RIKEN-led BASE collaboration at CERN have made the most precise measurements so far of the charge-to-mass ratio of protons and their antimatter counterparts, antiprotons. The work, published in Nature, was carried out using CERN’s Antiproton Decelerator, a device that provides low-energy antiprotons for antimatter studies.

CPT invariance—which the experiment was meant to test—means that a system remains unchanged if three fundamental properties are reversed—C (charge), which distinguishes matter from antimatter, P (parity), which implies a 180 degree flip in space, and T (time). It is a central tenet of the standard model, and implies that antimatter particles must be perfect mirror images of matter, with only their charges reversed.

"This is an important issue," says Stefan Ulmer, who led the research, "because it helps us to understand why we live in a universe that has practically no antimatter, despite the fact that the Big Bang must have led to the creation of both. If we had found violations of CPT, it would mean that matter and antimatter might have different properties—for example that antiprotons might decay faster than protons—but we have found within quite strict limits that the charge-to-mass ratios are the same."

To perform the research, the team used a scheme similar to that developed by the TRAP collaboration in the 1990s. They received antiprotons and negative hydrogen ions—as a proxy for protons—from the Antiproton Decelerator, and then trapped single antiproton-hydrogen ion pairs in a magnetic Penning trap, decelerating them to ultra-low energies. They then measured the cyclotron frequency of the pairs—a measurement that allows scientists to determine the charge-to-mass ratio—and compared them to find how similar they were. In total, they measured approximately 6,500 pairs over a 35-day period.

"What we found," says Ulmer, "is that the charge-to-mass ratio is identical to within just 69 parts per trillion." This measurement has four times higher energy resolution than previous measurements of proton-antiproton pairs, and further constrains the possibility of violations of CPT invariance. "Ultimately," he says, "we plan to achieve measurements that are at least ten or a hundred times more precise than the current standard."

The work also has implications for what is known as the weak equivalence principle—the idea that all particles will be affected by gravity in the same way, regardless of their mass and charge. The team used their findings to calculate that within about one part per million, antimatter and matter behave in the same way with respect to gravity.

According to BASE member Christian Smorra, "There are many reasons to believe in physics beyond the standard model, including the mystery of dark matter and, of course, the imbalance between matter and antimatter. These high-precision measurements put important new constraints and will help us to determine the direction of future research."

The study was done by the BASE collaboration, which includes researchers from RIKEN, CERN, the Max Planck Institute for Nuclear Physics, The University of Tokyo, Johannes Gutenberg University, GSI Helmholtz Centre for Heavy Ion Research, and Helmholtz Institute Mainz.

Monday, August 10, 2015

Measuring the smallest vibration


absolute zero. This required building a sensor capable of resolving the smallest vibration allowed by quantum mechanics.

Quantum mechanics predicts that a mechanical object, even when cooled to absolute zero, produces small vibrations, called “zero-point fluctuations”. The reason we don’t observe these vibrations in everyday life is that for a tangibly sized object at room temperature, they are much smaller than the vibrations caused by thermal motion of atoms. EPFL researchers have overcome this challenge by coupling a micrometer-sized glass string to a very precise, optical displacement sensor. The sensor is so precise that it can, in principle, resolve the string’s zero-point fluctuations before they are obscured by thermal vibrations. Combining this low-noise readout with a feedback force, the scientists were able to suppress the string’s thermal vibrations to a magnitude only 10 times larger than their zero-point value – in effect realizing an extreme version of a noise cancellation headphone. The work is published in Nature.

Feedback at the quantum limit

Feedback is a ubiquitous tool in modern engineering, used in applications ranging from cruise control to atomic clocks. The basic paradigm uses a sensor to monitor the state of a system (e.g. a car's velocity) and an actuator (e.g. an engine throttle) to steer the system along a desired path (e.g. within the ed limit).

As sensor technology advances, it has been proposed to use such "feedback control" to prepare and stabilize delicate quantum states – for instance, the celebrated half-living, half-dead state of Schrodinger's Cat. Aside from their fundamental interest, the ability to cultivate quantum states is expected to play a crucial role in future technologies such as quantum computers.

The main challenge to quantum feedback control is something called "decoherence", which dictates that the behavior of a system in a quantum state is rapidly destroyed by its interaction with the thermal environment. This places stringent requirements on the speed and precision of the sensor. Successful demonstrations have therefore been limited to a small subset of well-isolated systems, like individual trapped atoms, photons, and superconducting circuits.

Shedding light on the problem

The lab of Tobias J. Kippenberg at EPFL has fabricated an extremely precise optical position sensor that may – surprisingly – extend quantum feedback control to engineered mechanical devices . In the "blink of an eye" (0.3 - 0.4 seconds) the sensor is capable of resolving a displacement 100 times smaller than the size of a proton. Making use of such a high-speed sensor, it is possible to capture an image in which the blur (or uncertainty) of an object's position is smaller than the uncertainty caused by the thermal motion of its constituent atoms.

Using a continuous stream of such "freeze frames", the researchers have used feedback to reduce the motion of a mechanical device – in this case the vibration of a micron-sized, glass string – to the value it would have if the device were cooled 0.001 degrees above absolute zero. The residual vibration of the string is only 10 times bigger than the minimum (``zero-point”) value allowed by quantum mechanics. This means that the string spends 10% of its time in its quantum “ground state.”

Kippenberg’s lab specializes in the field of “cavity optomechanics”. In optomechanics, much like in high-speed photography, the motion of a mechanical device is imaged using an intense beam of light. The challenge in this case was to focus the light into a very small spot, in order to maximize its interaction with the tiny string.

The researchers achieved this by confining the light and the string to a miniature “hall of mirrors” called an “optical microcavity”. Developed in the Center of MicroTechnology at EPFL, the optical microcavity is a small, disk-shaped piece of glass, above which the string is suspended by 50 nm. Laser light coupled into the disk circulates along its periphery ~10,000 times, each time reflecting off the string and incurring a small delay in proportion to the string’s vibration amplitude. This delay is measured using a technique called interferometry.

To cool the string’s vibration, the researchers took advantage of a well-known side-effect of optical measurement: namely, that each reflection of the circulating field also imparts a small force, called “radiation pressure”, on the string. Using a sequence of electronics, the researchers imprinted a measurement of the string’s vibration onto the intensity of a second laser field. As lead author Dal Wilson explains, “The radiation pressure applied by the second field, when appropriately delayed, exactly opposes the thermal motion of the string, like a noise-cancellation headphone”.

http://www.nanotechnologyworld.org/#!Measuring-the-smallest-vibration/c89r/55c8cde20cf2244af607fa2e